Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 99-109, 2024.
Article in Chinese | WPRIM | ID: wpr-1003413

ABSTRACT

ObjectiveTo investigate the effect of Tangzhi pills on the improvement of insulin resistance (IR) in the liver with type 2 diabetes (T2DM) by regulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway based on differential genes and its possible molecular mechanism. MethodT2DM rat models were prepared by high fat (HFD) diet combined with streptozotocin (STZ) intraperitoneal injection. The experiment was divided into blank group, model group, metformin hydrochloride group (0.18 g·kg-1), Tangzhi pills high (1.08 g·kg-1), medium (0.54 g·kg-1) and low (0.27 g·kg-1) dose groups. Rat serum, liver, and pancreatic tissue were collected, and the pathological tissue of the liver and pancreas was observed using hematoxylin-eosin (HE) staining. The fasting blood glucose level (FBG) was detected, and oral glucose tolerance (OGTT) tests were conducted. Enzyme-linked immunosorbent assay (ELISA) was used to detect fasting serum insulin (FINS) and glycated hemoglobin (GHb) levels in rats. IR homeostasis model index (HOMA-IR), β cellular homeostasis index (HOMA-β), and insulin sensitivity index (ISI) were calculated. Biochemical methods were used to determine the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C) in rat serum. Transcriptomics obtained differentially expressed mRNA from liver tissue and enriched differentially expressed pathways. Real-time reverse transcriptase polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of cyclic adenylate responsive element binding protein 3-like protein 2 antibody (CREB3l2), B-lymphocyte tumor 2 (Bcl-2), Toll-like receptor 2 (TLR2), cyclin-dependent kinase inhibitor 1A (CDNK1A), and DNA damage induced transcription factor 4-like protein (DDIT4) in liver tissue. Western blot was used to detect the protein expression of phosphorylated phosphatidylinositol 3-kinase (p-PI3K), phosphorylated protein kinase B (p-Akt), glucose transporter 4 (GLUT4), insulin receptor (INSR), and insulin receptor substrate 2 (IRS2). ResultThe pharmacodynamic experiment results showed that compared with model group, Tangzhi pills groups repaired liver and pancreatic tissue to varying degrees, reduced blood sugar (P<0.01), and promoted a decrease in serum FINS, GHb, and HOMA-IR (P<0.05, P<0.01). In addition, HOMA-β and ISI increased (P<0.05, P<0.01). The levels of TC, TG, and LDL-C decreased (P<0.05, P<0.01), while the levels of HDL-C increased (P<0.05, P<0.01). The transcriptomics experimental results confirmed that the PI3K/Akt signaling pathway was significantly expressed in both the blank group and model group, as well as in the high-dose Tangzhi pills group and model group. CDNK1A, DDIT4, CREB3l2, Bcl-2, and TLR2 were significantly differentially expressed mRNA during TG intervention in T2DM. Compared with the model group, the protein expression of p-PI3K, p-Akt, GLUT4, INSR, and IRS2 increased in all Tangzhi pills groups (P<0.01). The mRNA expression of CREB3l2, Bcl-2, and TLR2 increased (P<0.01), while that of CDNK1A and DDIT4 decreased (P<0.01). ConclusionTangzhi pills may regulate the PI3K/Akt signaling pathway based on the differential mRNA expression of CREB3l2, Bcl-2, TLR2, CDNK1A, and DDIT4, thereby improving IR in the liver with T2DM.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 61-69, 2024.
Article in Chinese | WPRIM | ID: wpr-999161

ABSTRACT

ObjectiveTo screen out the transcriptomes related to the intervention of Wuzi Yanzongwan on the spermatogenic function of semi-castrated male mice, and to explore its potential mechanism in the intervention of the progress of low spermatogenic function. MethodBalb/c mice were randomly divided into sham-operated group, model group, testosterone propionate group(0.2 mg·kg-1·d-1, intramuscular injection) and Wuzi Yanzongwan group(1.56 g·kg-1·d-1, intragastric administration) according to body weight, with 12 mice in each group. The right testicle and epididymis were extracted from the model group and the drug administration group to construct the semi-castrated model of low spermatogenic function, while the fur and the right scrotum of the sham-operated group were only cut and immediately sterilized and sutured. At the end of the intervention, hematoxylin-eosin(HE) staining was used to observe the histopathology of testis, enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of serum testosterone(T), luteinizing hormone(LH) and follicle stimulating hormone(FSH). The sperm count and motility of epididymis were measured by automatic sperm detector of small animal. Transcriptomic microarray technology was used to detect the mRNA expression level of testicular tissue in each group, the transcriptome of genes related to the regulation of Wuzi Yanzongwan was screened, and three mRNAs were selected for Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) to verify the transcriptome data. Through the annotation analysis of Gene Ontology(GO) and the signaling pathway analysis of Kyoto Encyclopedia of Genes and Genomes(KEGG), the related functions of drugs regulating transcriptome were analyzed. ResultCompared with the sham-operated group, the testicular tissue of mice in the model group showed spermatogenic injury, contraction and vacuolization of the seminiferous tubules, reduction of spermatogenic cells at all levels, widening of the interstitial space, obstruction of spermatogonial cell development and other morphological abnormalities, and serum T significantly decreased, LH significantly increased(P<0.01), and FSH elevated but no statistically significant difference, the count and vitality of epididymal sperm significantly decreased(P<0.01). There were 882 differentially expressed mRNAs in the testicular tissues, of which 565 were up-regulated and 317 were down-regulated. Cluster analysis showed that these differentially expressed mRNA could effectively distinguish between the sham-operated group and the model group. Compared with the model group, the damage to testicular tissue in the Wuzi Yanzongwan group was reduced, the structure of the seminiferous tubules was intact, vacuolization was reduced, and the number of spermatogenic cells at all levels was significantly increased and arranged tightly. The serum T significantly increased, LH significantly decreased(P<0.01), and FSH decreased but the difference was not statistically significant. The count and vitality of sperm in the epididymis were significantly increased(P<0.01). Moreover, Wuzi Yanzongwan could regulate 159 mRNA levels in the testes of semi-castrated mice, of which 32 were up-regulated and 127 were down-regulated, and the data of the transcriptome assay was verified to be reliable by Real-time PCR. GO and KEGG analysis showed that the transcriptome functions regulated by Wuzi Yanzongwan were involved in the whole cell cycle process of sperm development such as sex hormone production of interstitial cells in testis, renewal, differentiation, metabolism, apoptosis and signal transduction of spermatogenic cells, and were closely related to the biological behaviors of signaling pathways such as spermatogenic stem cell function, endoplasmic reticulum protein processing and metabolic program. ConclusionWuzi Yanzongwan can effectively improve the low spermatogenic function of semi-castrated male mice, and its mechanism may be related to the regulation of testicular transcriptional regulatory network, the synthesis of sex hormones in testicular interstitial cells, the function of spermatogenic stem cells, the whole cell cycle process of spermatogenesis, as well as the expression of endoplasmic reticulum protein processing and metabolic program related genes transcription.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 109-117, 2023.
Article in Chinese | WPRIM | ID: wpr-988186

ABSTRACT

ObjectiveIn this study, based on ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS/MS) and high-throughput transcriptome sequencing technology(RNA-seq), we investigated the mechanism of Yishen Huashi granules in regulating serum metabolites and renal messenger ribonucleic acid(mRNA) expression to improve diabetic kidney disease(DKD). MethodSD rats were randomly divided into normal group , model group and Yishen Huashi granules group, with 8 rats in each group. The rat model of DKD was established by intraperitoneal injection of streptozotocin. Yishen Huashi granules group was given 5.54 g·kg-1·d-1 of Yishen Huashi granules by gavage, and the normal group and the model group were given the same amount of normal saline for 6 weeks. During the experiment, the body weight and blood glucose of rats were monitored, and the rats were anesthetized 24 hours after the last administration, blood was collected from the inferior vena cava, serum was separated, and renal function, blood lipid, and inflammatory indicators were detected. Kidney tissue of rats was fixed in neutral paraformaldehyde, and stained with hematoxylin-eosin(HE), Masson and periodic acid-Schiff(PAS) to observe the renal pathological changes. UHPLC-MS/MS and RNA-seq were used to identify the changes of serum metabolism and the differences of renal mRNA expression, and real time fluorescence quantitative polymerase chain reaction(Real-time PCR) and Western blot were used to detect the differential mRNA and protein expression in renal tissue to explore the common expression mechanism. ResultCompared with the normal group, rats in the model group showed a decrease in body weight, a significant increase in blood glucose, urinary microalbumin to urinary creatinine ratio(UACR), blood urea nitrogen(BUN), cystatin-C(Cys-C), β2-microglobulin(β2-MG), interleukin-6(IL-6), triglyceride(TG) and total cholesterol(TC), and a significant decrease in total superoxide dismutase(T-SOD)(P<0.01). After the intervention of Yishen Huashi granules, all the indexes were improved to different degrees in rats(P<0.05, P<0.01). Compared with the normal group, the model group showed renal mesangial stromal hyperplasia, fibrous tissue hyperplasia and tubular vacuolar degeneration. Compared with the model group, the renal pathology of rats in Yishen Huashi granules group was improved to a certain extent. A total of 14 target metabolites and 96 target mRNAs were identified, the target metabolites were mainly enriched in 20 metabolic pathways, including sphingolipid metabolism, glycerophospholipid metabolism, and the biosynthesis of phenylalanine, tyrosine and tryptophan. The target mRNAs were enriched to obtain a total of 21 differential mRNAs involved in the TOP20 pathways closely related to glycolipid metabolism. A total of 6 pathways, glycerophospholipid metabolism, arachidonic acid metabolism, purine metabolism, primary bile acid biosynthesis, ascorbic acid and uronic acid metabolism, and galactose metabolism, were enriched by serum differential metabolites and renal differential mRNAs, among them, there were 7 differential metabolites such as phosphatidylethanolamine(PE) and 7 differential mRNAs such as recombinant adenylate cyclase 3(ADCY3). Seven differential metabolites had high predictive accuracy as verified by receiver operating characteristic(ROC) curve, and the results of Real-time PCR and Western blot were highly consistent with the sequencing results. ConclusionYishen Huashi granules can reduce UACR, BUN and other biochemical indexes, correct the disorder of glucose and lipid metabolism, and improve renal function of DKD rats. And its mechanism may be related to the regulation of the level of PE and other blood metabolites, and expression of Phospho1 and other mRNAs in the kidney, of which six pathways, including glycerophospholipid metabolism, may play an important role.

4.
Protein & Cell ; (12): 433-447, 2023.
Article in English | WPRIM | ID: wpr-982561

ABSTRACT

Molecular knowledge of human gastric corpus epithelium remains incomplete. Here, by integrated analyses using single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) techniques, we uncovered the spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium. Specifically, we identified a stem/progenitor cell population in the isthmus of human gastric corpus, where EGF and WNT signaling pathways were activated. Meanwhile, LGR4, but not LGR5, was responsible for the activation of WNT signaling pathway. Importantly, FABP5 and NME1 were identified and validated as crucial for both normal gastric stem/progenitor cells and gastric cancer cells. Finally, we explored the epigenetic regulation of critical genes for gastric corpus epithelium at chromatin state level, and identified several important cell-type-specific transcription factors. In summary, our work provides novel insights to systematically understand the cellular diversity and homeostasis of human gastric corpus epithelium in vivo.


Subject(s)
Humans , Epigenesis, Genetic , Gastric Mucosa/metabolism , Chromatin/metabolism , Stem Cells , Epithelium/metabolism , Fatty Acid-Binding Proteins/metabolism
5.
China Journal of Chinese Materia Medica ; (24): 1343-1351, 2023.
Article in Chinese | WPRIM | ID: wpr-970605

ABSTRACT

The present study investigated the mechanism of artesunate in the treatment of bone destruction in experimental rheumatoid arthritis(RA) based on transcriptomics and network pharmacology. The transcriptome sequencing data of artesunate in the inhibition of osteoclast differentiation were analyzed to obtain differentially expressed genes(DEGs). GraphPad Prism 8 software was used to plot volcano maps and heat maps were plotted through the website of bioinformatics. GeneCards and OMIM were used to collect information on key targets of bone destruction in RA. The DEGs of artesunate in inhibiting osteoclast differentiation and key target genes of bone destruction in RA were intersected by the Venny 2.1.0 platform, and the intersection target genes were analyzed by Gene Ontology(GO)/Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment. Finally, the receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model and collagen-induced arthritis(CIA) model were established. Quantitative real time polymerase chain reaction(q-PCR), immunofluorescence, and immunohistochemistry were used to verify the pharmacological effect and molecular mechanism of artesunate in the treatment of bone destruction in RA. In this study, the RANKL-induced osteoclast differentiation model in vitro was established and intervened with artesunate, and transcriptome sequencing data were analyzed to obtain 744 DEGs of artesunate in inhibiting osteoclast differentiation. A total of 1 291 major target genes of bone destruction in RA were obtained from GeneCards and OMIM. The target genes of artesunate in inhibiting osteoclast differentiation and the target genes of bone destruction in RA were intersected to obtain 61 target genes of artesunate against bone destruction in RA. The intersected target genes were analyzed by GO/KEGG enrichment. According to the results previously reported, the cytokine-cytokine receptor interaction signaling pathway was selected for experimental verification. Artesunate intervention in the RANKL-induced osteoclast differentiation model showed that artesunate inhibited CC chemokine receptor 3(CCR3), CC chemokine receptor 1(CCR1) and leukemia inhibitory factor(LIF) mRNA expression in osteoclasts in a dose-dependent manner compared with the RANKL-induced group. Meanwhile, the results of immunofluorescence and immunohistochemistry showed that artesunate could dose-dependently reduce the expression of CCR3 in osteoclasts and joint tissues of the CIA rat model in vitro. This study indicated that artesunate regulated the CCR3 in the cytokine-cytokine receptor interaction signaling pathway in the treatment of bone destruction in RA and provided a new target gene for the treatment of bone destruction in RA.


Subject(s)
Rats , Animals , Arthritis, Experimental/drug therapy , Artesunate/therapeutic use , Arthritis, Rheumatoid/genetics , Transcriptome , Network Pharmacology , Osteoclasts , Receptors, Cytokine/therapeutic use
6.
Biomedical and Environmental Sciences ; (12): 441-451, 2023.
Article in English | WPRIM | ID: wpr-981072

ABSTRACT

OBJECTIVE@#Here, we explored molecular changes that could potentially mediate healing effects of Gua Sha - a method employed by the Chinese traditional medicine with proven track records of safe and efficient applications dating back to ancient times as well as support from randomized controlled trials performed by modern medical studies - yet remaining almost entirely unexplored by the modern-day high-throughput methods of the -omics sciences.@*METHODS@#We investigated transcriptome changes occurring shortly after Gua Sha treatment in the whole blood of healthy volunteers using bulk RNA-seq analysis. We applied various analytical tools to identify genes with consistent expression changes in multiple individuals in response to Gua Sha and their networks.@*RESULTS@#We found that while the changes were very subtle and individual-specific, we could identify consistent upregulation of three histone genes. Further analysis of the potential regulatory networks of these histone genes revealed the enrichment of functions involved in the immune response and inflammation.@*CONCLUSION@#The significance of these results in the context of potential effects of Gua Sha and the next steps in exploring the molecular mechanisms of action of this technique are discussed.


Subject(s)
Humans , Medicine, Chinese Traditional/methods , Histones , Gene Expression
7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 117-125, 2023.
Article in Chinese | WPRIM | ID: wpr-980181

ABSTRACT

ObjectiveThe transcriptome characteristics of different tissues of Codonopsis pilosula were analyzed to illustrate the genetic basis of the accumulation of active ingredients in the root of C. pilosula, and to provide theoretical basis for its high-quality production and cultivation. MethodDifferent tissues of C. pilosula at flowering stage were selected as experimental materials, and the contents of tangshenoside Ⅰ, lobetyolin and atractylenolide Ⅲ were detected by high performance liquid chromatography(HPLC). RNA-Seq was used to perform transcriptome sequencing of different tissues, and the differentially expressed genes were screened and analyzed by Gene Ontology(GO) and Kyoto Gene and Encyclopedia of Genes and Genomes(KEGG) enrichment analysis, in order to explore the characteristics of active compound distribution and the transcriptional profiles. ResultThe contents of polysaccharides and tangshenoside Ⅰ in the root of C. pilosula were significantly higher than those in other tissues. The transcriptional profiles of the root were significantly different from those of stem, leaf and flower. Cluster analysis, GO and KEGG enrichment analysis of differential gene expression showed that the differential expression genes were mainly enriched in flavonoid and phenylpropanoid biosynthesis, sucrose-starch metabolism, plant hormone signal transduction, plant-pathogen interaction, mitogen-activated protein kinase(MAPK) cascade signal transduction, Adenosine triphosphate(ATP)-binding cassette(ABC) transporter and other pathways. The expression of genes related to biosynthesis of phenylpropanoid compounds were significantly up-regulated in the roots and flowers, and ABC transporter proteins were mostly highly expressed in the flowers. The expression of key enzyme genes for polysaccharide synthesis, such as sucrose:sucrose 1-fructosyltransferase(1-SST) and fructan 1-exohydrolase(1-Feh), were significantly up-regulated in the roots, and a large number of stress-responsive genes closely related to the accumulation of secondary metabolites were significantly up-regulated in the roots. ConclusionThe active compound content and transcriptional profiles in C. pilosula roots were significantly different from those in stem, leaf, flower and other tissues, showing tissue specificity. Meanwhile, the genes related to stress response and biosynthesis of active compound, such as fructan and phenylpropanoid compounds, were up-regulated in roots of C. pilosula.

8.
Acta Pharmaceutica Sinica ; (12): 2434-2441, 2023.
Article in Chinese | WPRIM | ID: wpr-999139

ABSTRACT

Blood stasis syndrome is one of the core clinical syndrome of rheumatoid arthritis (RA), but the biological connotation of this syndrome is not clear, and there is a lack of disease improved animal models that match the characteristics of this disease and syndrome. The aim of this study was to screen the candidate biomarker gene set of blood stasis syndrome of RA, reveal the biological connotation of this syndrome, and explore and evaluate the preparation method of the improved animal model based on the characteristics of "disease-syndrome-symptom". The study was approved by the ethics committee of Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine (No. 2019-073-KY-01) and the First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine (No. TYLL2021[K]018), and the study subjects gave their informed consent. Animal welfare and experimental procedures followed the regulations of the Experimental Animal Ethics Committee of the Chinese Academy of Traditional Chinese Medicine (No. IBTCMCACMS21-2207-01). The whole blood samples were collected clinically from RA patients with blood stasis syndrome (3 cases) or other syndromes (7 types, 3 cases/type), and healthy volunteers (4 cases), and then transcriptome sequencing, KEGG, gene set enrichment analysis (GSEA) and weighted correlation network analysis (WGCNA) analysis were performed. 126 pivotal genes were screened, and their functional annotation results were significantly enriched in "immune-inflammation" related pathways and lipid metabolism regulation (sphingolipids, ether lipid metabolism and steroid biosynthesis). Syndrome-symptom mapping of hub gene set to the TCM primary and secondary symptoms, Western phenotypic symptoms and pathological links showed that joint tingling, abnormal joint morphology, petechiae and abnormal blood circulation are representative of blood stasis syndrome of RA. The results of the improved animal model showed that the rats in the collagen-induced arthritis + adrenaline hydrochloride (CIA+Adr) 3 model group had increased blood rheology, coagulation, platelet function and endothelial function abnormalities compared with the CIA-alone model group, suggesting that the rats with blood stasis syndrome of RA may be in a state of "blood stasis". The results of the study can help to advance the objective study of the evidence of blood stasis syndrome in RA, and provide new ideas for the establishment of an animal model that reflects the clinical characteristics of the disease and syndrome.

9.
China Pharmacy ; (12): 2483-2489, 2023.
Article in Chinese | WPRIM | ID: wpr-997006

ABSTRACT

OBJECTIVE To explore the potential targets and mechanisms of the modified Baihe dihuang decoction (MBD/ BDD) applied in post-stroke depression (PSD). METHODS Network pharmacology was used to mine the potential targets and key pathways of MBD/BDD in the treatment of PSD. PSD model rats were induced by focal cerebral ischemia surgery combined with chronic unforeseen mild stress, and then were randomly divided into PSD model group, MBD/BDD group (12.6 g/kg, by raw drug), and fluoxetine hydrochloride (FLX) group (positive control, 2.3 mg/kg); a blank control group was also set up, with 8 rats in each group. Each administration group was given a corresponding medication solution by gavage once a day for 21 consecutive days. The intervention effect of MBD/BDD on depression-like symptoms in model rats was evaluated by open field and forced swimming tests. The brain tissues of rats in each group were dissected and total RNA was extracted for transcriptome sequencing and bioinformatics analysis. The mRNA and protein expressions of genes with significant changes and common neurotrophic factors were verified based on the above results. RESULTS A total of 131 MBD/BDD antidepressant-related target genes were obtained (such as IL1B and AKT1, etc.), which were closely related to neural active ligand-receptor interactions and cyclic adenosine monophosphate signaling pathway. MBD/BDD could significantly prolong or increase the total time spent and distance traveled in the central grid of qiangzhe@cqtcm.edu.cn PSD model rats, and significantly shorten the cumulative immobility time (P<0.05). After treatment with MBD/BDD, the number of genes that changed in rat brain tissue was much higher than that in the FLX group, and there were significant differences in gene profiles among the PSD model group, MBD/BDD group, and FLX group. There were 1 351 differentially expressed genes (DEGs) between the MBD/BDD group and the PSD model group, of which 178 were significantly down-regulated and 1 173 were significantly up-regulated (P<0.05). Above 1 351 DEGs were involved in neuronal differentiation, chemical synaptic transmission regulation. They were significantly enriched in axonal guidance, cholinergic synapses and neuroactive ligand-receptor interactions. The top 30 genes in terms of up-regulation in the brain tissue of rats of MBD/BDD group were all associated with neuronal proliferation, development, differentiation, and migration. After MBD/BDD intervention, the expressions of Fezf2, Arx, Ostn, Nrgn genes, brain-derived neurotrophic factor and tyrosine kinase receptor B protein in brain tissue of rats were significantly increased (P<0.05). CONCLUSIONS The anti-PSD effect of MBD/BDD may be related to the up-regulation of the expression of genes related to neuronal proliferation, development, differentiation and migration, as well as the promotion of neural structural and functional repair.

10.
Neuroscience Bulletin ; (6): 213-244, 2023.
Article in English | WPRIM | ID: wpr-971539

ABSTRACT

Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors - the glial scar is triggered by injury and inhibits or promotes regeneration. Recent technological advances in spatial transcriptomics (ST) provide a unique opportunity to decipher most genes systematically throughout scar formation, which remains poorly understood. Here, we first constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples. Locally, we profiled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment, such as neurotransmitter disorders, activation of the pro-inflammatory response, neurotoxic saturated lipids, angiogenesis, obstructed axon extension, and extracellular structure re-organization. In addition, we described 21 cell transcriptional states during scar formation and delineated the origins, functional diversity, and possible trajectories of subpopulations of fibroblasts, glia, and immune cells. Specifically, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophages, CD36 and Postn in fibroblasts, Plxnb2 and Nxpe3 in microglia, Clu in astrocytes, and CD74 in oligodendrocytes. Furthermore, salvianolic acid B, a blood-brain barrier permeation and CD36 inhibitor, was administered after surgery and found to remedy fibrosis. Subsequently, we described the extent of the scar boundary and profiled the bidirectional ligand-receptor interactions at the neighboring cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found that GPR37L1_PSAP, and GPR37_PSAP were the most significant gene-pairs among microglia, fibroblasts, and astrocytes. Last, we quantified the fraction of scar-resident cells and proposed four possible phases of scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence, and scar stationary. Together, these profiles delineated the spatial heterogeneity of the scar, confirmed the previous concepts about scar architecture, provided some new clues for scar formation, and served as a valuable resource for the treatment of central nervous system injury.


Subject(s)
Mice , Animals , Gliosis/pathology , Cicatrix/pathology , Spinal Cord Injuries , Astrocytes/metabolism , Spinal Cord/pathology , Fibrosis , Mammals , Receptors, G-Protein-Coupled
11.
International Eye Science ; (12): 1304-1308, 2022.
Article in Chinese | WPRIM | ID: wpr-935003

ABSTRACT

Diabetic retinopathy(DR)is one of the common and severe ocular complications of diabetes mellitus, representing a leading cause of blindness among working-age people. Currently, the pathogenesis of DR is not been explained, and the treatment effect is quite limited in advanced stage. In recent years, it has been revealed in some studies that DR could produce a particularly remarkable performance in genomics, transcriptomics, epigenomics, proteomics and metabolomics. With the rapid development of high-throughput sequencing and detection technology, different omics techniques can explore the occurrence and development mechanism of DR from different omics levels. This paper introduces the research progress of DR in different omics techniques,as well as the new direction of integration analysis in multiomics with DR, and finally discusses the current existing problems and future prospects of omics technology. Therefore, the application of different omics techniques to explore the occurrence and development of DR on different levels contributes a novel idea to unraveling the pathophysiological mechanism of DR and identifying new biomarkers and therapeutic targets.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 77-85, 2022.
Article in Chinese | WPRIM | ID: wpr-940488

ABSTRACT

ObjectiveTo explore the differences in response to bakuchiol-induced hepatotoxicity between Institute of Cancer Research (ICR) mice and Kunming (KM) mice. MethodThe objective manifestations of bakuchiol-induced hepatotoxicity in mice were confirmed by acute and subacute toxicity animal experiments, and enrichment pathways of differential genes between normal ICR mice and KM mice were compared by transcriptomics. The real-time quantitative polymerase chain reaction (real-time qPCR) assay was used to verify the mRNA expression of key genes in the related pathways to confirm the species differences of bakuchiol-induced liver injury. ResultIn the subacute toxicity experiment, compared with the normal mice, the ICR mice showed increased serum content of alkaline phosphatase (ALP), and 5′-nucleotidase (5′-NT), without significant difference, and no manifest change was observed in KM mice. Pathological results showed that hepatocyte hypertrophy was the main pathological feature in ICR mice and hepatocyte steatosis in KM mice. In the acute toxicity experiment, KM mice showed erect hair, mental malaise, and near-death 3 days after administration. The levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in KM mice (400 mg·kg-1) significantly increased(P<0.01), and the activity of total reactive oxygen species (SOD) in liver significantly decreased(P<0.01)compared with those in normal mice, while the serum content of 5′-NT and cholinesterase (CHE) in ICR mice (400 mg·kg-1) were significantly elevated (P<0.01). The liver/brain ratio in ICR mice increased by 20.34% and that in KM mice increased by 29.14% (P<0.01). The main pathological manifestation of the liver in ICR mice was hepatocyte hypertrophy, while those in KM mice were focal inflammation, hepatocyte hypertrophy, and hepatocyte steatosis. Kyoto Encyclopedia of Genes and Genomes(KEGG)and Reactome pathway enrichment analyses showed that the differential gene expression between ICR mice and KM mice was mainly involved in oxidative phosphorylation, bile secretion, bile acid and bile salts synthesis, and metabolism pathway. CYP7A1 was up-regulated in all groups with drug intervention (P<0.01) and MRP2 was reduced in all groups with drug intervention of KM mice (P<0.01) and elevated in all groups with drug intervention of ICR mice (P<0.01) compared with those in the normal group. The expression of BSEP was lowered in ICR mice with acute liver injury (400 mg·kg-1) (P<0.05). SHP1 was highly expressed in KM mice with acute liver injury (400 mg·kg-1). The expression of FXR was diminished in ICR mice with subacute liver injury (200 mg·kg-1) (P<0.01). SOD1, CAT, and NFR2 significantly decreased in KM mice with acute liver injury (400 mg·kg-1), and CAT dwindled in KM mice with subacute liver injury (200 mg·kg-1) (P<0.01). GSTA1 and GPX1 significantly increased in KM mice with acute liver injury (400 mg·kg-1) (P<0.01) and SOD1, CAT, NRF2, and GSTA1 significantly increased in ICR mice with subacute liver injury (200 mg·kg-1) (P<0.01). CAT and NRF2 significantly increased in ICR mice with acute liver injury (400 mg·kg-1) (P<0.01). ConclusionWith the increase in the dosage of bakuchiol, the liver injury induced by oxidative stress in KM mice was gradually aggravated, and ICR mice showed stronger antioxidant capacity. The comparison of responses to bakuchiol-induced hepatotoxicity between ICR mice and KM mice reveals that ICR mice are more suitable for the investigation of the mechanisms related to bile secretion and bile acid metabolism in the research on bakuchiol-induced hepatotoxicity in mice. KM mice are more prone to liver injury caused by oxidative stress.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 63-71, 2022.
Article in Chinese | WPRIM | ID: wpr-940387

ABSTRACT

ObjectiveTo analyze the transcriptome characteristics of Xianlian Jiedu prescription (XLJDP) in the intervention of colorectal carcinoma by high-throughput cDNA-sequencing (RNA-seq). MethodNinety male C57BL/6 mice were randomly divided into the control group, colorectal carcinoma due to dampness, heat, stasis, and toxin model group, and XLJDP group, with 30 mice in each group. Mice in the model group and XLJDP group were fed a high-fat diet and provided with azoxymethane and dextran sodium sulfate (AOM/DSS) for inducing colorectal carcinoma. Those in the XLJDP group were further treated with intragastric administration of 12.9 g·kg-1 XLJDP since the day of modeling for 112 days. The colorectal tissues were collected from each group 4 h after the last drug treatment and stained with hematoxylin-eosin (HE) and methylene blue for observing the pathological changes. The total RNA was extracted from colorectal tissues for RNA-Seq-based transcriptome profiling, followed by gene oncology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis and the screening and verification of differentially expressed genes. ResultCompared with the model group, XLJDP significantly relieved the colorectal congestion and edema and decreased tumor number and volume in mouse colorectal tissues. The methylene blue staining results indicated that XLJDP significantly suppressed the development of aberrant crypt foci (ACF,P<0.01). As revealed by HE staining, XLJDP significantly alleviated the injury and dysplasia of colorectal tissues. Transcriptome analysis identified 615 differentially expressed genes (446 up-regulated and 169 down-regulated) between the model group and the blank group and 54 differentially expressed genes (29 up-regulated and 25 down-regulated) between the XLJDP group and model group. XLJDP mainly affected the expression of NIMA-related protein kinase 7 gene (Nek7, P<0.01), Mucin 16 (Muc16, P<0.01), SiahE3 ubiquitin protein ligase family member 3 (Siah3, P<0.01), regenerating islet-derived protein 3-gamma (Reg3g, P<0.01), RNA polymerase Ⅱ elongation factor-associated factor 2 (Eaf2, P<0.01), transforming growth factor‐alfa gene (TGF-α, P<0.05), secretoglobin family 1A member 1 (Scgb1a1, P<0.05), family with sequence similarity 227 member B (Fam227B, P<0.05), cytochrome P450 family 2 subfamily c polypeptide 40 (Cyp2c40, P<0.01), and ankyrin repeat and EF-hand domain containing protein 1 (Ankef1, P<0.05). Enrichment analysis showed that intestinal epithelial cell proliferation, metabolism of xenobiotics by cytochrome P450, and arachidonic acid metabolism signaling pathway were significantly enriched. ConclusionXLJDP is able to interfere with colorectal tumorigenesis and development due to dampness, heat, stasis, and toxin in mice, which has been proved by transcriptome analysis to be related to the regulation of metabolism-related pathways.

14.
Chinese journal of integrative medicine ; (12): 99-105, 2022.
Article in English | WPRIM | ID: wpr-922581

ABSTRACT

The abnormality of platelet function plays an important role in the pathogenesis and evolution of blood stasis syndrome (BSS). The explanation of its mechanism is a key scientific issue in the study of cardiovascular and cerebrovascular diseases and treatment. System biology technology provides a good technical platform for further development of platelet multi-omics, which is conducive to the scientific interpretation of the biological mechanism of BSS. The article summarized the pathogenesis of platelets in BSS, the mechanism of action of blood activating and stasis resolving drugs, and the application of genomics, proteomics, and metabonomics in platelet research, and put forward the concept of "plateletomics in BSS". Through the combination and cross-validation of multi-omics technology, it mainly focuses on the clinical and basic research of cardiovascular and cerebrovascular diseases; through the interactive verification of multi-omics technology and system biology, it mainly focuses on the platelet function and secretion system. The article systematically explains the molecular biological mechanism of platelet activation, aggregation, release, and other stages in the formation and development of BSS, and provides a new research idea and method for clarifying the pathogenesis of BSS and the mechanism of action of blood activating and stasis resolving drugs.


Subject(s)
Blood Platelets , Hemostasis , Platelet Activation , Proteomics , Technology
15.
Chinese journal of integrative medicine ; (12): 130-137, 2022.
Article in English | WPRIM | ID: wpr-922572

ABSTRACT

OBJECTIVE@#To explore the mechanisms of Dangua Recipe (DGR) in improving glycolipid metabolism based on transcriptomics.@*METHODS@#Sprague-Dawley rats with normal glucose level were divided into 3 groups according to a random number table, including a conventional diet group (Group A), a DGR group (Group B, high-calorie diet + 20.5 g DGR), and a high-calorie fodder model group (Group C). After 12 weeks of intervention, the liver tissue of rats was taken. Gene sequence and transcriptional analysis were performed to identify the key genes related to glycolipid metabolism reflecting DGR efficacy, and then gene or protein validation of liver tissue were performed. Nicotinamide phosphoribosyl transferase (Nampt) and phosphoenolpyruvate carboxykinase (PEPCK) proteins in liver tissues were detected by enzyme linked immunosorbent assay, fatty acid synthase (FASN) protein was detected by Western blot, and fatty acid binding protein 5 (FABP5)-mRNA was detected by quantitative real-time polymerase chain reaction. Furthermore, the functional verification was performed on the diabetic model rats by Nampt blocker (GEN-617) injected in vivo. Hemoglobin A@*RESULTS@#Totally, 257 differential-dominant genes of Group A vs. Group C and 392 differential-dominant genes of Group B vs. Group C were found. Moreover, 11 Gene Ontology molecular function terms and 7 Kyoto Encyclopedia of Genes and Genomes enrichment pathways owned by both Group A vs. Group C and Group C vs. Group B were confirmed. The liver tissue target validation showed that Nampt, FASN, PEPCK protein and FABP5-mRNA had the same changes consistent with transcriptome. The in vivo functional tests showed that GEN-617 increased body weight, HbA@*CONCLUSION@#Nampt activation was one of the mechanisms about DGR regulating glycolipid metabolism.


Subject(s)
Animals , Rats , Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Glycolipids , Liver , Metabolic Diseases , Rats, Sprague-Dawley , Transcriptome/genetics
16.
Chinese Critical Care Medicine ; (12): 1154-1160, 2022.
Article in Chinese | WPRIM | ID: wpr-991933

ABSTRACT

Objective:To analyze the differentially expressed gene (DEG) in rats with sepsis-induced exogenous acute respiratory distress syndrome (ARDS) and explore the early diagnosis and protective mechanism of sepsis-induced ARDS at the transcriptome level.Methods:Twelve 6 to 8 weeks old male Sprague-Dawley (SD) rats were randomly divided into lipopolysaccharide (LPS) induced sepsis-induced ARDS model group (model group, intraperitoneal injection of LPS 15 mg/kg) and control group (intraperitoneal injection of the same volume of normal saline), with 6 rats in each group. RNA was extracted from the left lung tissue of the two groups, and the paired-end sequencing mode of the illumina Hiseq sequencing platform was used for high-throughput sequencing. The DESeq2 software was used to screen DEG with | log 2 (fold change, FC) | ≥ 3 and P < 0.001. Gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on DEG. STRING and CytoScape software were used to construct a protein-protein interaction (PPI) network and screen key genes. The peripheral blood mononuclear cell (PBMC) of 20 septic patients admitted to the emergency and critical care medical department of Lianyungang First People's Hospital from March to November 2021 and 20 age-matched healthy people in the same period were isolated and extracted, and the key genes were verified by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). Results:A total of 286 DEG were screened, including 202 up-regulated genes and 84 down-regulated genes. GO enrichment analysis showed that DEG was mainly involved in biological processes such as neutrophil chemotaxis migration, antibacterial humoral response, host immune response, and humoral immune response. KEGG analysis showed that DEG mainly played a biological role through interleukin-17 (IL-17) signaling pathway, tumor necrosis factor (TNF) signaling pathway, and chemokine signaling pathway. In PPI analysis, a total of 262 node proteins were screened, and the interaction relationship was 852 edges. The first 15 key genes were IL-6, TNF, IL-10, IL-1β, chemokine ligand 1 (CXCL1), CXCL10, chemokine receptor 3 (CXCR3), CXCR2, CXCL9, chemokine ligand 7 (CCL7), CXCL11, CCL1, CXCL13, CCL12, and CCL22. Five representative key genes were performed on PBMC of blood samples from septic ARDS patients and healthy controls by RT-qPCR. The results showed that their expression was significantly higher than that in the healthy controls [IL-6 mRNA (2 -ΔΔCt): 2.803±1.081 vs. 0.951±0.359, TNF mRNA (2 -ΔΔCt): 2.376±0.799 vs. 1.150±0.504, CXCL10 mRNA (2 -ΔΔCt): 2.500±0.815 vs. 1.107±0.515, CXCR3 mRNA (2 -ΔΔCt): 1.655±0.628 vs. 0.720±0.388, CCL22 mRNA (2 -ΔΔCt): 1.804±0.878 vs. 1.010±0.850, all P < 0.05], and the trends were consistent with the RNA-Seq results. Conclusion:Biological processes such as chemotactic migration and degranulation of inflammatory cells, cytokine immune response, and signal pathways such as CXCL10/CXCR3 and IL-17 play important roles in the occurrence and development of sepsis-related exogenous ARDS, which would provide new ideas and targets for further study of lung injury mechanisms and clinical prevention and treatment.

17.
Protein & Cell ; (12): 281-301, 2022.
Article in English | WPRIM | ID: wpr-929175

ABSTRACT

A fundamental challenge that arises in biomedicine is the need to characterize compounds in a relevant cellular context in order to reveal potential on-target or off-target effects. Recently, the fast accumulation of gene transcriptional profiling data provides us an unprecedented opportunity to explore the protein targets of chemical compounds from the perspective of cell transcriptomics and RNA biology. Here, we propose a novel Siamese spectral-based graph convolutional network (SSGCN) model for inferring the protein targets of chemical compounds from gene transcriptional profiles. Although the gene signature of a compound perturbation only provides indirect clues of the interacting targets, and the biological networks under different experiment conditions further complicate the situation, the SSGCN model was successfully trained to learn from known compound-target pairs by uncovering the hidden correlations between compound perturbation profiles and gene knockdown profiles. On a benchmark set and a large time-split validation dataset, the model achieved higher target inference accuracy as compared to previous methods such as Connectivity Map. Further experimental validations of prediction results highlight the practical usefulness of SSGCN in either inferring the interacting targets of compound, or reversely, in finding novel inhibitors of a given target of interest.


Subject(s)
Drug Delivery Systems , Proteins , Transcriptome
18.
Journal of Forensic Medicine ; (6): 806-812, 2021.
Article in English | WPRIM | ID: wpr-984078

ABSTRACT

OBJECTIVES@#To study the transcriptomic changes of astrocytes in the brain of rats exposed to methamphetamine (METH) and its possible mechanism in neurotoxicity.@*METHODS@#The rats were intraperitoneally injected with METH (15 mg/kg) every 12 h for 8 times in total to establish the subacute rat model of METH. After the model was successfully established, the striatum was extracted, and astrocytes were separated by the magnetic bead method. Transcriptome sequencing was performed on selected astrocytes, and the differentially expressed genes were analyzed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis.@*RESULTS@#A total of 876 differentially expressed genes were obtained by transcriptome sequencing, including 321 up-regulated genes and 555 down-regulated genes. GO analysis revealed that differentially expressed genes were mainly concentrated in cell structure, biological process regulation, extracellular matrix and organelle functions. KEGG pathway enrichment analysis showed that steroids biosynthesis, fatty acid biosynthesis, peroxisome proliferators-activated receptor (PPAR), adenosine 5'-monophosphate-activated protein kinase (AMPK) and other signaling pathways were significantly changed.@*CONCLUSIONS@#METH can cause structural changes of astrocytes through multiple targets, among which cellular structure, steroids biosynthesis and fatty acid biosynthesis may play an important role in nerve injury, providing a new idea for forensic identification of METH related death.


Subject(s)
Animals , Rats , Astrocytes , Brain , Gene Expression Profiling , Methamphetamine/pharmacology , Signal Transduction , Transcriptome
19.
Journal of Forensic Medicine ; (6): 776-787, 2021.
Article in English | WPRIM | ID: wpr-984075

ABSTRACT

The mechanism of methamphetamine toxicity and addiction is the key research direction of forensic toxicology, and the development of omics technology provides a new platform for further study of this direction. METH toxic damage and addiction are reflected differently in genes, ribonucleic acid (RNA) transcription, protein and metabolism. This article summarizes the achievements and shortcomings of multi-omics technologies such as genome, transcriptome, metabolome and proteome in the study of METH damage and addiction, and discusses the strategies and advantages of multi-omics combined analysis in the study of METH toxic damage and addiction mechanism, in order to provide more useful reference information for forensic toxicology of METH.


Subject(s)
Metabolome , Metabolomics , Methamphetamine/toxicity , Proteome , Proteomics
20.
Mem. Inst. Oswaldo Cruz ; 116: e200634, 2021. graf
Article in English | LILACS | ID: biblio-1154876

ABSTRACT

The availability of Trypanosomatid genomic data in public databases has opened myriad experimental possibilities that have contributed to a more comprehensive understanding of the biology of these parasites and their interactions with hosts. In this review, after brief remarks on the history of the Trypanosoma cruzi and Leishmania genome initiatives, we present an overview of the relevant contributions of genomics, transcriptomics and functional genomics, discussing the primary obstacles, challenges, relevant achievements and future perspectives of these technologies.


Subject(s)
Trypanosoma cruzi/genetics , Genome, Protozoan/genetics , Leishmania/genetics , Computational Biology , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL